AF‐embeddability for Lie groups with T1 primitive ideal spaces
نویسندگان
چکیده
We study simply connected Lie groups $G$ for which the hull-kernel topology of primitive ideal space $\text{Prim}(G)$ group $C^*$-algebra $C^*(G)$ is $T_1$, that is, finite subsets are closed. Thus, we prove AF-embeddable. To this end, show if solvable and its action on centre $[G, G]$ has at least one imaginary weight, then no nonempty quasi-compact open subsets. in addition locally compact with $T_1$ spaces strongly quasi-diagonal.
منابع مشابه
Scale Spaces on Lie Groups
In the standard scale space approach one obtains a scale space representation u : R R → R of an image f ∈ L2(R) by means of an evolution equation on the additive group (R,+). However, it is common to apply a wavelet transform (constructed via a representation U of a Lie-group G and admissible wavelet ψ) to an image which provides a detailed overview of the group structure in an image. The resul...
متن کاملLie Algebras, 2-Groups and Cotriangular Spaces
We describe the construction of a Lie algebra from a partial linear space with oriented lines of size 3, generalizing a construction by Kaplansky. We determine all suitable partial linear spaces and the resulting Lie algebras. 1 Lie oriented partial linear spaces A partial linear space is an incidence structure (P,L) with points and lines, such that the point-line incidence graph does not conta...
متن کاملQuantized Primitive Ideal Spaces as Quotients of Affine Algebraic Varieties
Given an affine algebraic variety V and a quantization Oq(V ) of its coordinate ring, it is conjectured that the primitive ideal space of Oq(V ) can be expressed as a topological quotient of V . Evidence in favor of this conjecture is discussed, and positive solutions for several types of varieties (obtained in joint work with E. S. Letzter) are described. In particular, explicit topological qu...
متن کاملPrimitive Ideal Space of Ultragraph $C^*$-algebras
In this paper, we describe the primitive ideal space of the $C^*$-algebra $C^*(mathcal G)$ associated to the ultragraph $mathcal{G}$. We investigate the structure of the closed ideals of the quotient ultragraph $ C^* $-algebra $C^*left(mathcal G/(H,S)right)$ which contain no nonzero set projections and then we characterize all non gauge-invariant primitive ideals. Our results generalize the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2021
ISSN: ['1469-7750', '0024-6107']
DOI: https://doi.org/10.1112/jlms.12432